titce

INSTITUTION
SPONS AGENCY
PUB DATE CONTRAC - NOTE

PUB TYPE
EDR'S PRICE
DESCRIPTORS

Development and Use df Error-Ptone Models to Supplement Pre-Established Criteria (pEC) in Selecting Pell Grant Recipients for Validation. Advanced Téchnology, Inc..., Reston, VA.; Westat Research, Inc:., Rockville; Md:
ffice of Student Tinancial Assistance (ED), ashington ${ }^{\circ}$ DC.
tpec 82
700-80-0952

- Ilpe: For related documents; see HE 018 113-135 and HE 018 136-140. . Statistical Data..(110) -- Reparts - Descriptive (141)

MFO1/PC05 pius Postage.
Comparative Analysis; Cost Effectiveness; Dependents;
Error Patterns; Evaluation Criteria; Family Characteristics; *Federal Aid; *Financiall Aid Applicantsf Higher Edacation; Income; *Mathenatical Models; *Need Analysis (Student.Financial Aid); Prediction; Predictor, Variables; Self Supporting Students; Statístical Analysis; 'Student Characteristics; *Student-Financial Aid Error Prone Model; *pell Grant Progran; Yalidation Verification and Testing Techniques select fell Grant recipients for validation is discussed. The 1983-1984 Pell Grant validation strategy consists of a twp-stage? approach: selection using Pre-Established Criteria (PEC) Eollowed by selection using Error Prone Modeling (EEN)./ The database' used for model development consists of a sample of 1980-1981. Pell Grant Recipients. The policy question is which students should be selected for barious types of validation measures. Eight effectiveness measures áre defined and for each measure an, error-prone model is developed that will identify those cases for which the corresponding type of validations will funcover the highest Ievel of error. The data elements friclude: income, U.S. taxes paid, household size, nontaxabie income, liquid assets, spouse income, and dependency status. The eight-models are then compared in order to identify the most cost-effective approach to marginal selection for validation. The measures refer only, to the payment consequences of discrepancies likely to be uncovered by the corresponding type of validation being used. Detailed appendices include EPY arror tables and Automatic Interaction Detector coding categories for predictor vaziables. (SW)

TABLE OF CONTENTS

LIST OFREPORTS \qquad

LIST OF FIGURES \qquad iv

1. INTRODUCTION \qquad 1
II. CRITERION VARIABLESOR EFFECTIVENESS MEASURES 3
III. PROJECTING THE SAMPLE DÃTA BASE 7
IV. \quad MODEL APPROACH AND RESULTS \qquad -8

APPENDIXA EEPMERROR TABLES
1
APPENDIX B AD CODING CATEGORIES'FOR PREDICTOR VARIABLES

LIST OF FIGURES

PAGE

Validation Strategies52Removable Error Using Alternate Enctis27.3-B Removable Ercor Using Altérnate EPM's' (Cumulative Percent Below 25\%) 28

- ${ }^{\text {\% }}$

DEVELOPMENT AND USE OF ERROR-PRONE MODELS TO SUPPLEMENT PRE-ESTABLISHED CRITERIA (PEC) IN SELECTINGPELL GRANT RECIPIENTS FOR VALIDATION

1. INTRODUCTION

A. Policy Question Addressed

The Pell Grant validation strategy for $1983-84$ will possibly consist of a twostage approach:

- Selection using Pre-Established Criteria (PEC) followed by
\because Selection using Error Prone Modeling (ERM),
A further modification of validation focuses on which application items will be validated. The purpose of this paper is to report on the developmept of a number of error-prone models where each model allgns with a particular strategy concerning which items are to be validated. These models will be used to select cases for validation which have not already been selected using the Pre-Established Criteria. Thus the error-prone models will be used to define selections at the margin. it may be argued that selection using error-prone models should be used in place of the selection using the Pre-Established Critfria. This option can not be considered in the analysis here because of the lack of a sufficient or apf jate data base.
-The data base used for model development consists of a sample of 1980-81 Pell Grant Recipients. As a result this data base can not provide finformation on truly non-' eligible applicants selected for validation who were deterred from. applying for assistance at an institution. Thus, one important component of the measure of $\%$ Select -selection effectiveness is excluded by the research methodology used for sample. selection. In defense of this research strategy it should be noted that the sample was not drawn nor designed for develapment of error-prone models.

The poliey question addressed by this research effort is, "Which cases (students) should be selected for ${ }^{\text {dyarious }}$ types of valldation where type of validation is defined
by those application items which are validated?" We approach this question by first defining eight effectiveness measures. Each of these measures is specified based on one of the eight types of validation (i,e., which items would be validated). For each measure we develop an error-prone model which will identify those cases for which the corresponding type of valldation will uncover the highest level of error. These eight models can then be compared in order to identify the nost cost-effective approach to marginal selection for validation.

It should be emphasized that the eightrcriterion or effectiveness measures are not error measures as used elsewhere in the Pell Grant Quality Control Study. In other places, error; was defined as the payment consequence of any discrepancies in any application of award computation item. The measures, used in this research effort refer only to the payment consequences of discrepancies tikely to be uncovered by the corresponding type of validation being used. For example, if we are focusing on the payment consequence of Adjusted Gross Income discrepdncies, any payment consequences of discrepancies in the reporting of home value, other non-taxable income, and veteran benefits woulg not be included. This is an important point because the types of validation considered, here are far more limited in uncovering discrepancies. than the multi-faceted fiefó protocol used in Stage One of the Quality Control study. In other words, the error likely to be rembyed by, any model or Atrategy developed here $^{\prime}$ will be considerably less than the error

In addition, there are other reasohs why' the aggregate error measures used in' this work are below the total error levels reported for the Stage One effort. These reasons will be pointed out in the following discussions.

B. Nature of the Sample Data Base

The sample used to develop the models discussed later in this paper has the following limitations: .

- The universe consisted only of 1980-81 Pell Grant recipients.
- Student cases selected for validation were excluded.
- Special condition filers'wełe excluded.
- α Late applicants (second semester, etc.) were-excluded.

Student and parent interviews or student record abstracts were not sufficiently complete dué to non-response or missing data were éxcluded
-1 Certain 1980-81 recipients were excluded from the sample because of programmatic changes or because of assumptions or adjustments used to project the 1980-81 data base to the 1982-83 program year.

The second and sixth items listed above are among the reasons why the total error levels of this report are below the Stage One estimates.

II. CRITERION VARIABLES OR EFFECTIVENESS MEASURES

The effectiveness measures used to develop the error-prone models represent the change in payment which wouldmikely result from discrepancies uncovered by the corresponding type of validation. Furthermore, it. is assumed that once these discrepancies are uncovered they will also be corrected.

The eight validation strategies are as follows:

- Type 1. .Validate Adjusted Gross Income for parents of dependent students or independent students:

Type 2 - Validate Adjusted Gross Income and U.S.-taxes paid for independent students or parents of dependent students.
Type 3: Validate Adjusted Ġross Income, U.S. taxes' paid, and household size for Independent students and parents of dependent students and student/spouse net income for dependent students.

Type. 4 Validate Adjusted Gross Income and U.S. taxes paid for independent students and parents of dependent students and student/spousê net income for dependent students.

Type 5 Validate Ádjusted.Gross Income, U.S. taxes paid, household size and non-taxable income for independent students or dependent pakents and student/spouse net income for dependent students:

- Type 6 Validate Adjústed Gróss Income, U.5. taxes paid, household size, non-taxable income and liquid-assets for dependent parents or independent : students. "and student/spouse net income for dependent students.

Type 7 Validate Adjusted Grôss Income, U.S. taxes paid, household size. and non-taxable income for independent students or dependent parents.
 Type 8 Validate Adjusted Gross Income and U.S. taxes paid fon independent students, or dependent parents and dependency status for all students. "

Figure 1 summarizes the eight strategies.
The dependent variables are defined as the paymegt change associated with error uncovered in those items included in the associated type of validation. For example, Model 3 would be based on the payment change associated with correcting adjusted gross income, housefiold size, and U.S. taxes paid and student/spouse net income of dependent students. Payment consequences of errors present in other application items would nopt be included in the dependent variable.

Practically speaking the calculation involves the difference between two calculated expected disbursements. One calculated expected payment is based on the values found in the fall Student Eligibility Report (SER) for all application items.* The second calculation uses fall SER values for all application items except for the items to be yalidated. For those items'the best verified values uncovered during the multifaceted field work are used. The difference between these two calculated expected payments represents the payment consequence of replacing application values with correct values for the items to be validated.

In contrast, "the error measures reported in Stage One would have" involved, the payment consequences of replacing all fall $S E R$ values for application items with the best values uncovered by the multi-faceted field work. Thus, it is possible that because of offsets, disregards, stepped increments, interactions and interdependencies

[^0]

In the Pell Grant payment formula, that errors in AGI, taxes paid, 'etc. do not have payment-consequences in terms of our effectiveness measyres when they, would have - payment consequences in the presence of the correct values for items which áre not validatep.

Finally, we have used "a "nët" rather thàn "over-award" effectiveness measure. This net error measure is assigned on a case basis. For each case, the dependent variable used in AlD runs is the actual case error (student error). Cases with untierawards have negative award errors, and cases with over-awards have positive values. All error is therefore taken into gonsideration in the statistical calculations generated by the AID programs.

Using this net error measure the AID search technique can identify groups with large positive or negative error. The former groups will have 1) more cases with overawards than under-awards, 2) cases with larger over-awards than under-awards; or 3) both more and larger Ufver-akards. The same logic holds true for groups with relatively largen net under-awards. Presentation of EPM results using the net error measure can take a number of forms. It is possible, for instance, to calculate the absolute error for each group identified by the model (in, addition to calculating mean over-awards, under-awards, or net error for each group) simply by adding the absolute values of total under-awards-to total over-awards:

We did not ise the overpayment, nor underpayment, measure because it is possible that a group identified as having high levels of overpayments for those ceases with overpayments might also have high levels of underpaymients for other cases; Selection of this type of group would result in both overpayment and underpayment corrections without reducing the level of program expenditures.

Using the absolute value measure could also result in selection of groups which have both high qverpayments and high underpayments. Furthermore, the model would. not differentiate groups having high overpayments from groups with siffilafly high
underpayments. . It is possible that use of a measure insensitive to this distinction would lead to selection of groups with only high underpayments.

III. PROJECTING THE SAMPLE DATA BASE

The sample was drawn from the universe of 1980-81 Pell Grant recipients. . In order to utilize this data it was necessary to incorporate three types of adjustments or modifications to, reflect the following changes between 1980-81 and 1982-83:
4. Shifts in demographic composition'

- Changes in ec̃onomic magnitudes reflecting price level changes

Programmatic changes in the.Pell Grant program.
The first two adjustments were affected through the use of multiplicative factors. These factors were derived by comparing applicant data for the two program years.

The demographic factors were_applied to the 1980-81 sample weights according to student status and age using June 1982 and June 1980 program statistics. Economic adjustment factors represent the ratio of the $1982-83$ average to the $1980-81$ average for the following application items for income, expense and equity values based on data from Technical Updatẹ́ No. 6 of OSFA's Applicant-Based Model:

- Adjusted Gross income
- U.S. Taxes Paid
- Cash and Savings
- Dependent Student Assets
- Social Security Benefits
- Veterans'Benefits
- Cost of Attendance.

The alterations made to reflect programmatic changes between 1980-81 and 1982-83 are incorporated in the formulae for the student aid index and-payment 9^{2}
determination. This jis accomplished by using the 1982:83 methodology a yhat the 1980-81 data base. We encountered no difficulty in-utilizing the $82-83$ methodology with onity pne exception: The one exception involved student social security benefits. Revised program ruleś requiré segregating éducational and non-educational benefits. However, the 1980-81 appfication allowed ondy joiht reporting of current year amounts for these two benefit types. Therefore, we have fad to assume that all student social - security benefits were for educational purposes. This assumption will not be directly involved in the effectiveness measures sinçe it is'not a validated item in any of the eight types of validation.

The 1982-83 methodology, however, involves a significant policy, shift reflected in the progressive tax rate structure. As a result, many of the highest-income recipients in the 1980-81 sample lose eligibility for the 1982-83 program year. To the extent that these middle incoine recipients had high error rates on adjusted gross income, their exclusion will reduce the total amount of error which can be identified by our error-prone models. This' shift to a progressive tax structure is among the reasons why total error used here is-below the Stage One éstimates.

IV. MODEL APPROACH AND RESULTS

The discussion here reviews the preliminary results of error profiling using only selected áplicátion data as potential predictors and recipient cases which were not selected for kalidetion. The criterion or dependent variable "used in error profiling is student error/as discussed above.

Data consisted of approximately 2,500 records of Basic Grant recipients who had not been selected for validation. For each recipient, the file contains data from the thion (as recorded on computed applicant records obtained from the central Ory, the student and parent questionnaires, IR's copies of income tax records, and student record abstracts. Many of these data items are used to calculate the best
student award which is the standard against which error is calculated. The list of potenilal predictors was restricted to the set of data elements available on the 1982-8,3 application as simulated by "applying correction factors to 1980-81 applications. This was done because the origiral motivation for this effort was to develop new rules for selecting applicants for validation. Selection would have to be hased on only the data elements actually on the application. Some application elements were eliminated a priori-since they were not expected to have predictive power, leaving the following 45 potenitial predictors:

- Dependency status (independent or dependent student)
- Age of recipient
- Net income of the household,

Gross income of the household
The portion of income earned by the father or independent s tudent
Unusual medical expenses (dollars and percentage above 20 percent of net
income)

- Laxes paid by the parents or independent student
- Savings of the parents or independent student
- Net assets of dependent students
- Home value
- Home debt
- \bullet Home equity
- Value of investment assets
- Investment debt
- Net equity of investment assets
- Valueg of business or farm
- Business or farm debt
- Net equity in business or farm
- " Net family assets

Transaction number for the'SAR
Household size
Number of dependents attending postsecondary institutions
Whether or not tax figures are estimated
7) - Whether tax returns were assumed to have been filed

- Number of exemptions

Adjusted grows income,
Social'Security income ${ }^{1}$
Nontaxable income, other than Social Security
Dependent student's own income
Whether student is a citizen or eligible U.S. resident
Student's marital status
Student's Social Security educational benefits
Student's Veterans educational benefits
Student's estimated 1982-83 income

- Unreimbursed tuition
- Parent's marital status
- Value of itemized deduction for 1981
- Value of initial SAI
- Whether student lived with parents in 1981
- Whether student lived with parents in 1982
- Whether student was dlaimed af an exemption on parent's 1981 incomefax return
- Whether student was claimed asian exemption on parent's 1982 income tax. return
- Whether student received $\$ 750$ in support from parents in 1981

Whether student received $\$ 750$ in support from parents in 1982.

The AID model evaluates each predictor with respect to its ability to form two separate groups very different from each other with respect to the level of erfor. Aftet finding that predictor which yields this best split, the process is repeated on each of the two new groups. The process continues until one of three events occurs:

- Newly"formed groups have fewer than 25 observations.
\therefore There areover 51 groups.
The best split does not improve prediction power enough, i.e., resulting between-group sum of rsquares is less than . 1 percent of total sum of squares.

ERM 1 - Validating Adjusted Gross Incolne

The analysis for Errot-Rrone Madel 1 (AGI only) produced 39 groups, 20 of which are final groups. These final groups are mutually exclusive and include all the cases used in the analysis. Twelve of the potential predictor variables come into play in the definition of the final groups. The largest average positive net error (\$156) occurs in Group 13 while the largest average negative get error (\$-60) is found in Group 14. In Group 13, there are 16 cases of over-award put of a total of 42 cases; these thave a mean over-award of \$443. Four cases in this group have under-awards (queraging \$113), and the rémaining 22 cases have no award error related to student misreporting of AGI. Two figures setting out net average error and mean over- and under-awards for EPM Model 1 are included in the figures in Appendix A of this report.

The first split in EPM 1 was imposed to separate independent from dependent - students. This was done because of the fundamental differences between these two groups and because the predictor variables take on somewhat different meanings for these groups.

Independent students (Group 3) are then split on the portion of earned income earned by the student (as a portion of total student/spouse earned income). At the next level, groups are split acfording to whether students used tax data from a tax
return or estimated data, and on student age. Further splits were made in number of exemptions and gross income. Final splits were made on net household assets and. adjusted gross income.

Dependent -students (Group 2) split on the tax data sourcev(from returns versus estimated data) at the second level. Third level splits were on (umber of transactions and on AGI. 'Subsequent splits were on taxes paid and parents' marital status. Group 17 continued to split on whether or not the student was claimed by parents as a tax deduction for the current year. Splits continued to occur for four more levels:

Sixth level: Transaction number
Severith level: AGI
Eighth level: AGI again
Ninth level: AGI again.

The group with the highest net error, Group 13, consists of dependent students who stated that tax data (AGI, taxes, deductions, etc.) were estimated and who reported AGI'sof over $\$ 25,000$ on their applications. The definitions of all the groups, listed in order of net error, are found in the table for EPM 1 (below).

The order in which the predictor variables entered the AID model indicates the strength of their statistical explanatory power. This order for EPM L is:

- Income portion of father/student
- Source of tax data
- Number of Exemptions

- Adjusted Gross Income
- Number of Transactions
- Parent's marital status

Claimed by Parents as Deduction ' 82
Σ

- Taxes Paid

Gross Income
雨

- Net Housêhold Assets

Age:

The groups formed by the AD model can be used to plot the relationship between total net error potentially removable and required number of additional validations. This estimated relationship is depicted in the graph labeled "Removaple Error by Percent of Recipients" for EPM Madel 1. First, the groups are ranked by size of error. Then total net error for each group is calculated by multiplying average group error by group size. Then the clmulative group sizes and total net error are calculated, expressed as percentages, and used to plot the points in the figure.

For EPM 1, we see that Group 13, (about 1.7 percent of all cases) accounts for 13.1 percent of cumulative net error. The top four groups ($13,33,11$ and,23) together account for 7.1 percent of cases and 50.1 percent of cumulative net error. Approximately 30 percent of all cases account for practically all net error associated with inisreporting AGI.

EPM 2 - Validating Adjusted Gröss Income and Taxes Paid

Error-prone Model \mathcal{P} (EPM 2) measures only that portion of student erron attributable to error in reporting adjusted gross income ($\dot{A} G I$) and taxes paid. The adalysis for Error-prone Model 2 (AGI and taxes paid) resulted in a set of 45 groups, 33 of which are final groups. These 23 final groups are mutually exclusive and exhaustive, whereas the 22 other groups represent combinations of these 23 final groups. Fourteen of the 45 potential predictors are utilized in defining the final groups. Growp 15 has the highest average error, an overpayment of $\$ 161$, and Group 18 has the lowest average error, an underpayment of $\mathbf{- \$ 6 6}$.

The first split on EPM 2 was imposed to separate independent from dependent students. Independent students, Group 3, are then split based on portion of heome.
earned by the student. At the nex/lequel, independent students, are split according to. according to age. These groups, subsequently split on net income, number of , exemptions, and household size. Further splits were made on net incoine, then net household assets, and age.

Dependent students, Group 2, were split on net income at the second level. Splits at the third level utilized taxes paid and itemized deductions. Fourth level splits were based on whether tax figures were estimated ar were from tax returns. Number of transactions and marital status of parents) appear as fifth level split variables. Whether a student was claimed as a 1982 tax exemption, then number of transactions, then number in postsecondary education, and finally the father's income portion determine the subsequent splits. Complete definitions of the 23 final groups are presented in the figures for EPM 2 found in Appendix A of this report.

* 1

The importance of variables may be reflected by the order in which they first enter the model, as follows:

- Income portion of father/student
- Tax figures áre estimated

6. Net income

- Taxes paid
- Household size
- Transaction number
- Parents' marital status
- Net household assets
- Claimed as exemption in 1982
- Itemized deductions
- Age
- Number in postsecondary education
- Number of exemptions.

The graph labeled. "Removable Error by Percent of Recipients" is reproduced below.

If Group 15 (about 2.3 percent of all nonvalidated students) was selected for additional validation, abolt 22 percent of student error attributable to. AGI and taxes paid reportingl could petentially be removed. Selection of groups $15,31,35,33$, and 41, which together accdunt for 8.3 percent of nonvalidated students, could potentinlly expose 56.0 percent of cumulative net error. Since the graph depicts a 4 decreasing slope, gains to additional validation become lower as additional studants are selected. As noted earlier, this relationship is based on total studentuerror potentially renovable and thus may overstate error likely to be removed.

- EPM 3 - Vafidating AGI, Taxes Paid, Household Size, and Student/Spouse Incone:

EPM 3 produced a set of forty-five groups of which 23 are final groups. Seventeen of the 45 predictors are used in defining the final groups.

Group 1500 EPM 3 has the highest net over-award error (\$218); Group 36 has the highest net under-award error (- $\$ 90$). Eighteen of 35 cases in Group 15 have overawards averaging \$422. Group 15 consists of independent recipients with AGIs of over $\$ 4,000$ who have over 78 percent of earned income coming from the student, and who have used estimated data on 1040 items. (See tables below.)

The first split on EPM 3 is the independent-dependent split.
Independent students then split on earned income portion, then age and source of tax figures. Fourth level splfts are on age and AGI, fifth level splits are on inet income and number of exemptions; and sixth level splits are on AGI. The final two independent groups are determined by a split on household size. a.

Dependent students split on the second level based on whether or not students report living with parents in the current year. Third level splits for dependents are source of tax figures and taxes paid. Fough level splits are again on taxes paid,
student/spouse assets, and number of transactions. Fifth level splits utilize number of exemptions, parents' marital status and number in post secondary education. The final dependent splits used three more variables: whether parents provided $\$ 750$ financial assistance in the current year, net household assets, and dependent student/spouse income.

Complete group definitions are provided in the figures below.

- The variables entered the AID model in the following order (after the independent/dependent split):
- Father/spouse income portion
\&
Lived with parents 1982
Tax figures source
- Taxes paid
- Age .
- AGI
- Transaction number
- Net income.
- Number in college
, $\cdots 1$ 1
- Number, of exemptions
- Student assets
- Net household assets
- Parents' marital status
- . - Household size
- Supported by parents 1982
- Student/spouse income.

EPM 3 utilizes a more complex eryor measure than EPM 1 or EPM 2 . Since household size èrror is distributed differently than income tax-related application
error the Lorehze curve of removable errdr by percent of recipients shows a sligitly more gradual rate of vertical increase than the previous two models. Nevertheless, Group 15, with only 1.4 percent of cases accounts for 10.4 percent of cumulative net error and six groups representing* 11.9 percent of the sample account for 50.0 percent of cumulative net error assoniated with the four data elements (AGl, taxes paid, household size, and student/spouse income).

EPM 4: Validating AGI, Taxes Paid and Student/Spouse Income

- The EPM 4 ertor measure is drawn from verified data on dependent student income as well as family AGl and taxes paid. Datakpplicable to independent students is therefore identical to EPM 2 .

Independent Group 17 has the highest mean overpayment of the 26 final groups (\$161). Dependent Group 32 has the largest mean underpayment'(-\$44).

Splits on independent students are the same as those found in EPM 2, since the error matrix for independents in these two models is identical. Altogether, there were 51 groups formed by the model, 26 of which were final groups.

For dependent students, addition of error related to net dependent/spouse income produced the following results:

- Second level split on whether student lived with parents current year
- Third level splits on source of tax figures and parent marital status
- Fourth level splits on home values and source of tax figures
- Efth level splits on taxes paid and AGI
- *Sixth level splits on net income, age, home value and number of exemptions
- Seventh level splits on AGI and net household assets
- A final eighth level split on home debt.

The group definitions for EPM 4 are described fully in the figures for EPM 4 below.

Thirteen predictor variables (after status) entered the model for EPM 4 , in the following order:

- Father/student income portiog ".
- Lived with parents 1982
- Tax figure source
- - Parent's marital status
- Exemptions
- Houséhold size ${ }^{\circ}$
- Net income
- Taxes paid
- Net hớusehold assets
- Age
- Home value
- AGI
- Home debt.

The Lorenze curve of reinovable erfor by percent of reciplents shows that the bulk of error related to the data plements measured by EPM 4 are found in a small proportion of cases. Group 17 (with 2.3 percent of cases) accoungs for 18.4 percent of cumulative net error. About 26 percent of this group have overpayment errors averaging $\$ 605$ per recipient, while norecipients in this group had underpayments. The top five groups ($17,21,45,31$, and 27) áccount for 10.8 percent of the recipient population and 56.4 percent of recipient error related to AGI, taxes paid, and dependent student/spouse net income.

EPM S-Vatidating AGI, Taxes Paid, Household Size, Nontaxable Income, and Student/Spouse Incpme

The EPM 5 AID model produced the maximum fifty-one groups of which 26 are final groups. The overall mean net error associated with the five data elements
evaluated in EPM 5 is more than twice as large as the error evaluated in EPM modefs 1,2 and 3. (See the group suminary table below.)

The highest average net error (\$219) in EPM 5 is found in Group 29. Group 41. has a mean error of \$208. The lowest net error figure is found in Group 26 (\$-13). Almost half (16 of 40) cases in Gioup 29 have overpaymeht erfors, and these overpayments average $\$ 617$.

The basic strdependent/dependent status split was imposed on EPM 5 at the first level.

For ipdependent students, "the single second level split used the independent student income portion variable. Third level splits were on the age and AGI variables. Fourth level splits used source of tax figures and number of exemptions; fifth level splits used net household assets and net income; sixth level splizu used net income again, and the final seventh level split was on age:

Dependent splits are quite complex, as can be seen in the diagram for EPM 5 below. There are 31 dependent student groups, including 16 final groups created from nine levels of group splits:

- Second level splits on AGI

Third level splits on lived with parents and household size

- Fourth level splits on income portion ${ }^{2}$ of father, number of exemptions, and net household assets
- Fifth level split on source of tax figures

Sixth level splits on AGl and gross income
Seventh level splits on net income, cash, sävings and checking value, and
AGI dency status, the variables entering the model are:

- AGI
- Income portion of \ddagger ather/student
- Lived with parents 1982
- Source of tax figures
- Number of exemptions Gross incame
- Net household assets
- Net income
- Household size

Age
Cash; savings, checking
Parents' marital status,
Home value.
The Lorenze curve of potentially removable error by percent of recipients does not slope quite as steeply as Models 1-4, indicating the more complicated nature of interactions among the variables used to calculate the error measure. Neverthefss, a large proportion of error is found in the groups with high average net error. Group 29, - with 1.6 percent of all cases, accounts for 7.9 percent of cumulative net error. Groups $29,541,25,43$ and 49 represent 8.8 percent of the population and 34.8 percent of cumulative net error.

EPM. 6 - Validating AGI, Taxes Paid, Household Size, Nontaxable 'Income, Liquid Assets, and Student/Spouse Income

EPM 6 employs an error measure based on algebraic case error related to more Pell application Items than any of the other seven models considered here. As a result, this model exposes the greatest amount of potentially removable casegrror. This model also produces the most complex AID output.
\qquad

EPM 6 produces the maximum 51 total groups and $26^{\text {f final, mutually exclusive }}$ groups: Group 39 has an average case net error of $\$ 236$. Two other groups, 25 and 43, also have average net errors of over $\$ 200$. Seventeen of 41 cases in Group 39 have over-awards averaging $\$ 572$ per case; none in this group have under-awarts.

As the diagram of AID results 6 EP M 6 illustrates, the splits defiling the final ${ }^{\circ}$ groups are complicated.

For independents, the splits occur as follows:

- Second level splits on income portion of student
- Third level splits on AGI and age
- Fourth level splits on number of exemptions and source of tax figures

Fifth level splits on net household assets and net income

- Sixth level splits on net income

Ten levels of group splits define therinal dependent student groups:
Second level split on AGI

$$
z_{0}^{2}
$$

- Third level splits on household size and source of tax figures
- Fourth level splits on net household assets, income portion of father and investment value

Fifth level splits on number of exemptions and taxes paid

- Sixth level split on home yalue and age
- Seventh level split on number in college and net income
- Eighth level split on $\$ 750$ financial assistance from parents in 1982 and income portion of father.
- Ninth level split on income portion of father

Tenth level split on income portion of father again.

The order in which the predictor variables entered the model is a rough indicator of their statistical strength in explaining group variance for this model.

- AMI
- Income portion of father/student
- Tax figures source
- Investinent value
- Taxes paid.

Home value
Net household assets
Net income
Household size
Supported by parents 1982

Dependetat gtudents are divided into 14 final groups by the following eight sets of ir splits:

Qe Gecond Evel splits onthousehold size
Third level splits on taxespaid and lived with parents 1982
Fourth level splits on parents marital status, riumber of transactions, and number of exemptiońs
-...Fifth level splits on spurce of tax figures
Sixth level splits on taxes paid and $A G I$
Seventh level splits on number of exemptions and household size
Eighth level splits on inçome portion of father and student assets.

The predictor variables entered the AID model for EPM 7 in the following order after the imposed dependency status split:

- Income portion of student/spouse
- Household size
- AOT
- Lived with pa, ents 19821
- Tax figures source
- \therefore Transaction number
- Net housefold àssets
- Net income
- Taxes paid
- Number of exemptions

The Lorenze curve of re novable error by percent of recipients for EPM 7 shows a relatively smooth, decreasing slope. Group 27 , with 1.6 percent of cases constituted 9.3 percent of cumulative net error. The top five groups, accounting for 101 percent of cases, account for 43.3 percent of the total cunnulative net error attributable to error in the four elements measured by EPM 7.

EPM 8 - Validating AGL, Taxes Paid and Dopendefry Status

EPM 8 is quite similar to EPM 2. Verification of dependency status, the extra element present in EPM 8, presents particular measurement problems for AID modeling. In those cases where Stage One analysis ideptified errors in dependency status, it was often difficult to establish what the students' correct awards should have been because necessary parent or student income, asset, or family data was not available.

- This is particulatly problematic in the very small number of cases where we determined that students filing as dependents should actually have flled as independents. In addition; as stated above, a fairly large number of casew were deleted from this analysis because elther 1) the cases were selected for'PEC validation, or 2) the application data, 鯧ed" to look like 1982-83 data, would not have eptitled the student to an award at all. Finally, it is difficult to differentiate cases where dependency errors were "catght" independently of vèrification efforts linked to income verification. Cases where parents $A G I$ is verified through tax forms may also be cases where dependency was established using tax form exemption listings. As a result, the AID model for EPM 8 failed to find any differences between students using verified and application data'on dependency status: Group definitions in EPM \& for students are therefore identical to those for dependent students in EPM 2. These are listed above in the discussion of EPM 2, and can be found in the figures for EPM $\$$ below. Differences in the appearance of the charts is the result of graphic artists placing the boxes differently on the diagrams.

Comparing the Eight Models: Cost-Effectiveness Issues

The ultimate purpose of estimating the eight motels previously presented is to select the model and validation scheme which would be most cost-effective. Costeffectiveness analysis is used to answer one of two related questions:

- Which alternative achieves a given or specifled goal at the lowest cost; or
- Given a level of resources (costs) which alternative is most effective.

Figure 2 presents the cumulative number of cases and cumulative error potentially' removable for the eleven most error-prone groups for "each of the eight modelss Figures $3-A$ and $3-B$ are graphic representations of this information. The table assumes that there are two/million recipients not already flagged for validation or exempt from validation. Figure 3 B is the leftmost lower portion of Figure 3 A blown up by a factor of about four. This was done in order to allow visual separation of the line segments.

This table and accompanying graphical representation lare derived from the set of eight "Average Net Student Error and Group Sizes for Final Groups" table presented in Appendix A of this report. The percent of cumulative net error and cumulative percent of cases columns from the earlier tables have been multiplied by aggregate net error and total cases based on two million students to develop the cumulative erron potentially removable and cu fulative number of cases.

For example, if EPM \downarrow was used to select 350,000 cases for validation, about $\$ 33.6$ million in error could potentially be removed while EPM 2 would potentially yield between $\$ 31.1$ and $\$ 32.3$ million in error removed.

- In order to assess cost effectiveness, it is necessary to know the relative cost of the eight approaches. All eight require a tax form from either the parepts of dependent students or the independent student. Models 4, 5, and 6, in addition, may'? require two (or even more) tax forms. Models 3 through 8 require adjitional

REMOVABLE ERROR USING ALTERNATE EPM's

(IN MRLIONS OF DOLLARS)

documentation for household size, nontaxable income, liquid assets or student status: It should also be noted that these four items are not easily documented, i.e., they would be costly to validate.

Unfortunately, we are not now able to assign relative costs to the various strategies. However, EPM 6, which could uncover about $\$ 90$ million in error, is likely to be the most costly. EPM 4 is likely to be up to twice as costly as EPM 2 since EPM 4 requires documenting beth student and parent income.

Removing $\$ 25$ million in error would require approximately:

- 140,000 selections using EPM 5, EPM 6 or EPM 7
- 170,000 selections using EPM 3

204,000 selections using EPM I
C. 215,000 selections using EPM 2, EPM 4 or EPM 8.

Once the relative costs of the different schemes becomes available, or are assumed, the figures and tables can be recalculated using level of resources as the horizontal axes. This will convert the figure to represent cost-effectiveness tradeoffs amongst the eight madels.

In terms of validation the first question would be, "If the Department wanted to remove $\$ 20$ million of error, which scheme should be used?" As indicated below, EPM 6 would only require about 78,000 validations to achieve this objective.

However, we cannot say that EPM 6 is most cost-effective unless we know or are willing to assume that cost per validation is the same for all eight models, i.e., costs will not be different. It is unlikely that costs will be the same because the number of iterns to be valldated or documents to be collected varies across the EPM models. For example, Model 4 requires tax forms from both dependent parents and deperident students whereas Model 2 only requires one tax form per case.

In addition to the cost variation attributable to the number of required documents, the nature and/or complexity of the documents required to validate household size, liquid assets; nontaxable income and dependency'status will add to the çost differences.

Therefore, the number of cases required to remove $\$ 20$ million of error shown above must be converted to dollars of costs (or relative costs) in order to select the least cost method of removing the required level of erroc.

The second variant of the cost-effectiveness question requires that the number of required validations be converted to dollars of costs before we can answer the question. If, however, the costs were equal; we could ask how much error would be removed by validating up to 150,000 students:

Again, it appears that EPM 6 is the most cost-effective; however, this is only because of the equal cost assumption. In reality, given the complexity of EPM 6 validation, its costs would likely be over twice that of EPM 2, EPM 1, EPM 3 and EPM8.
ϑ

5

8

REMOVABLE ERROR BY PERCENT OF RECIPIENTS

$\begin{aligned} & \text { GROUP } \\ & \text { MUBER } \end{aligned}$	AVERAGE NET ERROR	CUMMLATIVE MET ERROR \%	$\begin{aligned} & \text { HLHEBER OF } \\ & \text { CASES } \\ & \hline \end{aligned}$	CIMULATIVE PERCENT OF CASES
13	\$156	13.1	42	1.7
33	138	22.9	35	3.1
11	126	41.4	62	5.6
23	121	50.1	37	7.1
21	$\bigcirc 87$	65.6	75	10.2
37	. 62	73.2	48	12.1
39	61	79.9	49	14.1
- 29	- 52	89.5	85	17.5
$\because 25$	41	95.3	71	20.4
20	15	96.9	44	$\therefore 22.2$
28	14	100.8	116	26.9
18	13	103.3	101	31.0
24	2 \%	107.4	809	63.8
26	2	108.3	167	70.5
36.	1	108.5	. 93	> 74.3
30	± 1	108.4	56	$\cdots 76.5$
16	-2.	107.3	179	83.8
34	-3	105.2	323	96.9
38	- -4	104.9	36	98.3
14.	-60	100.0	41	100.0

EPM 1:
AVERAGE NET STUDENT ERROR AND EROUP SIZES FOR FIMAL EROHPS

EPM 1:
MEAN-OVERALARDS AND UNDERALIARDS FOR FINAL GROUPS

REMOVABLE ERROR BY PERCENT OF RECIPIENTS

ERROR PRONE MODEL-2'

EPM 2:
AVERAGE MET STUDENT ERROR AND GROUP SIZES
FOR FIMAL EROUPS

MEAN OVERAMARDS AND tinderuiards FOR FINEL EROUPS

REMOVABLE ERROR BY PERCENT OF RECIPIENTS

ERROR PRONE MODEL-3

$\begin{aligned} & \text { GROUP } \\ & \text { HLMBER } \end{aligned}$	$\begin{aligned} & \text { ALERAGE } \\ & \text { MET ERROR } \end{aligned}$	$\begin{aligned} & \text { CWMLATIVE } \\ & \text { MET ERROR I } \end{aligned}$	$\begin{aligned} & \text { MUBER of } \\ & \text { CASES } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CUMULATI } \\ & \text { PERCENT OF } \end{aligned}$
15	\$218	10.5	35	1.4
21	191	22.1	51	3.5
25	119	31.8	60	5.9
31	113	39.9	63	8.5
41	110	44.9	39	10.0
45	94	50.0	46	11.9
39	90	56.9	67	14.6
13	78	62.1	46	16.5
35	56	65.5	44	18.3
33	53	70.6	66	20.9
43	42	74.8	90	24.6
19	36	84.5	199	32.6
38	33	91.8	194	40.5
24	31	95.3	86	44.0
29	19	109.3	627	69.4
40	18	110.4	49	71.4
32	1	110.7	398	87.5
42	-5	110.2	96	91.4
37	-8	109.8	40	93.0
44	-9	109.4	38	94.5
28	-35	107.2	55	96.8
16	-51	104.8	41	+ 98.4
36	-90	100.0	-439	100.0

EPM 3:
AVERAGE NET STUDEMT ERROR AHD GROUP SIZES
FOR FIMAL EROUPS

EPM 3:

MEAN OVERAMAROS AND UNDERAMARDS FOR FINAL GROUPS

Applicant Data	15	21	25	37	41	45
Status Father/Student Income Portion Lived with Parents ' 82 Tax Figures Source Taxes Patd Age Adjusted Gross Income Transaction Mumber Met Income Hunber in College Number of Exemptions Student Assets Net -household Assets Parent's Marital Status Household Size Supported by Parents '82 Student/Spouse Income	Independent Over 78\% Hot Frow Tax Form Over $\$ 4$, 000	Dependent Ho Mot Fran Tax form t	Independent Over 78: Not From Tax Fore \$4,000 and Under 10	Dependent Yes Over \$1,000 $\$$ Divorced	Dependent Yes $\$ 1,000$ and Under 2 and Under Over 2 Over 50	Dependrnt No From Tax Farm Over $\$ 500$
Mean Group Error	\$218	8191	\$119	. $\$ 113$	\$110	394
Applicant Data,	39	13	35	33	43	119
Status Father/Student Incoave Portion Gived with Parents ' 82 Tax Figures Source Taxes Pald Age Adjusted Gross Income Transaction Number Net Incone Number in College Number of Exemptions: Student Assets Net Household Assets Parent's Marftal Status Household Size Supported by Parents ' 82 Student/Spouse Income	Depenident Yes Over $\$ 1,000$ $\$ 0$ Nat Divarced No	Independent Over 78x From Tax form Over 35	Indeperident Over 78x From Tax Form 35 and Under Over \$8,000 Over $\$ 5,000$	Independent 78\% and Under Over 35	Dependent Yes Over $\$ 1, \mathrm{COO}$ - Over 4 Over $\$ 0$	Independent Over 78x Fron Tax Form 35 and Under \$5,000 ar. ${ }^{\text {a }}$ Under
Меan Group Error	90	- 78	56	54	$\cdots 42$	36
59			EPH?		\cdots	4

REMOVABLE ERROR BY PERCENT OF RECIPIENTS ERROR PRONE YODEL-4

$\begin{aligned} & \text { GROUP. } \\ & \text { MLMBER } \end{aligned}$	AVERAGE NET ERROR	cumillative MET ERROR \%	$\begin{aligned} & \text { NLABER OF } \\ & \text { CASES } \\ & \hline \end{aligned}$	CMALLATIVE PERCENT OF CASES
17	\$161	18.4	57	2.3
21	133	30.4	$\therefore 51$	4.4
45	- 98	40.3	- 60	- 6.8
31	94	47.4	38	8.3
- 27	75.	56.4	60	10.8
37	69	64.6	65	13.4
- 39	66	69.6	46	15.3
49	65	73.8	35	16.7
43	52	80.0	71	19.6
51	50	85.3	48	21.5
30	40	88.7	43	23.2
26	32	93.8	80	26.5
44	29	95.5	35	27.9
14	29	98.1	43	29.6
47	23	103.6	146	35.6
38	19	109.3	180	42.9
- 22	7	111.5	158	49.3
- 42	5	112.2	79	52.5
24	4	112.7	70	55.3
50	2	113.1	93	59.1
40	0	113.1	205	67.4
34	-4	110.4	323	80.4
10	-5	107.4	317	93.3
48	-6	106.9	49	95.3
46	-21	105.4	46	97.0
32	-44	100.0	- 32	100.0

EPM 4:
average net studemt error and group sizes FOR FIMAL ERDIPS
V

EPM 4

Applicant Data	46	32
Status	Dependent	Dependent
Father's/Student's		
Portion Lived with Parents ' 82	Yes	Yes
Tax Figures Source	From Tax Form	From Tax form
Parents' Marital Status	Married or Bivorced	Married or
Exemptions		
Household Size		
Net Itacome		Over \$17,500
Taxes Paid	Over $\$ 1,500$	\$1,500 and Under
Net Household Assets	\$5,000 and thater	
Age	- 21 and Under	
Home Value Adfusted Gross Income		
Hone Debt ${ }^{\text {a }}$		
Wean Met Error	\$-21	3-44

\pm

EPH 4

REMOVABLE ERROR BY PERCENT OF RECIPIENTS
ERROR PRONE MODEL-5

1

EPM 5:
AVERAGE NET STUDENT ERROR AMD GROUP SIZES FOR FIMAL GROUPS

EPM 5:
YEAN OVERAMARDS AND UNDERAMARDS
\therefore FOR FIMAL GRDUPS

75

	48	45	22	33	45	35.
Status Adjusted Gross Income	$\begin{aligned} & \text { Dependent } \\ & \$ 10,001-\$ 16,000 \end{aligned}$	Dependent Over $\$ 10,000$	Independent 88,000 and Under	Indeperident	Independent	Dependent
Income Portion of Father/Student			Over 788		Oyer $78 x$	10,001 - 16,000
Lived with Parents 1982	Yes	54x and Under Yes	Over 78\%	78\% and thder	Over 78\%	Yes
Source of Tax Figures	From tax form	From tax Form	Not From Tax Form		From Tax Forw	From Tax Form
Number of Exedptions Gross Incone	6 and Under $0,001-\$ 17,500$	6 and Under.				6 and Under
Net Household Assets	7,500	Over \$17,500				\$10,001-\$17,500
Het Income Household Size			\$2.500 and under		\$5,000 and Under	1
Age			\uparrow	Over 30	24 and Under...	
Cash and Savings		Over $\$ 0$				
Parent's Marital Status Home Value	$\begin{gathered} \text { Married } \\ \text { Over } \$ 20,000 \end{gathered}$			4		Hot Married
Mean Graup Error	49	48	18	45	42	26
- - - -						
	50	$30 \quad 17$	14	38	- 29	$32 \quad 2$
Status : Adjusted Gross lacome	Dependent $\$ 10,001-\$ 20,000$	Dependent $\$ 10,000$ and Under	$\begin{aligned} & \text { Dependent } \\ & \text { Over } \$ 10,000 \end{aligned}$	Independent \$8,000 and llader	ndependent \$8, 000 and Unfer	Independent
Income Portion of Father/Student				Over 78\%	\$8.gM and Unter	784 and Under
Lfved with Parents 1982	Yes		Yes			$78 x$ and Under
Source of Tax Figures Number of Exemptions	Not Fron Tax Form 6 and Under		Over 6	From Tax Form	from rax form	
Gross Income			Over 6			
Net Household Assets Net Incone	Over \$15,000	$\$ 20,000$ and Under		50 and Under	Over $\$ 0$	
Net Income Mousehold Size :	Over \$ \$15,000	Over 3		Over '35,000	\$0	
Age *						30 and Under
Cash and Savings	- $\quad \cdots$	-		-	-	and Under
Home Value	- \because	-				
Mean Group Error	24 -	18	14	10	10	0

EPH 5

	44	26
Status:	Dependent	Dependent -
Adjusted Gross Income	Oyer $\$ 10,000$	\$10,000 and Under
Incone Portion of Father/Student	Over 54\%	
Lived with Parents 1982	Ves	
Source of Tax Figures	From lax form	
Number of Exemptions	6 and Under	
Gross Income	Over \$17,500	
Net Househoid Assets		
Het Income		
Hausehold Size		3 and Under
Age .		
Cash and Savings	Over \$0	
Parent's Narital Status Honie Value		*
Hean Group Error	-2	-13

3

EPM 5

REMOVABLE ERROR BY PERCENT OF RECIPIENTS

ERROR PRONE MODEL-6

EPM 6:

AVERAGE NET STUDENT ERROR AND GROUP SIZES
FOR FINAL GROUPS

EPM 6:

MEAN OVERALIARDS AND UNDERAMARDS

 FOR FIMAL GROLPS| GROLP RHYXER | OVERAMARD MEAN N | UNDERAMARD MEAM H | $\begin{gathered} \text { NO ERROR } \\ \hline \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 39 | \$572 17 | $\$ 0$ | 24 |
| 25 | 45130 | -151 : 7 | 19 |
| 43 | 51815 | -99 1 | 21 |
| 47 | 31023 | -198 3 | 13 |
| 31 | 28633 | -162 4 | 34 |
| 27 | $581 \quad 17$ | -96' ${ }^{\text {' }} 1$ | 60 |
| 33 | 410 . . 22 | -182 1 | 45 |
| 45 | $236: 21$ | -130 4 | 27 |
| 37 | 575 13 | 0 | 78 |
| 46 | 256 32 | $-163-12$ | 40 |
| 51 | 23826 | -269: 4 | 49 |
| 42 | 277 9 | -131 . 3 | 24 |
| 38 | $184-15$ | $-153 \cdot 3$ | 24 |
| 26 | 581.8 | - 0 | 86. |
| 35 | 410 - 10 | - 83 - 3 | 122 |
| 49 | 182 . 40 | -222 12 | 68 |
| 40 | 182.19 | -247-6 | 25 |
| 36 | 216 \% | -1004 1 | 28 |
| 32. | 253 28 | -198 10. | 229 |
| 20 | 400×17 | $-370 \quad 12$ | 147 |
| 50 | 177. 18 | -223 9 | 75 |
| 34 | 194 , 13 | -238 11 | 299 |
| 16 | 327 6 | -183-12 | 29 |
| 18 | 120 20 | -183 27 | 184 |
| 14 | 23411 | -329 11 | 47 |
| 48 | 148 7 | -373 6 | 23 |
| - | | - | |

	38	25	35	49	40	36
Status Adjusted Gross Income Incone Partipn of Father/Student Tax Figures Source Investment Value Taxes Paid Home Value Net Household Assets Net Income Household Size Supported by Parents ' 82 Age Exempt fons Nurber in College	Bependent Over \$10;000 0x From Form 10 Over $\$ 0$ Over $\$ 10,000$ $\$ 15,000$ and Under	Independent $\$ 8,000$ and Under Over 78x Hot From Return \$2,500 and Under	Independent 78x and Under		Dependent Over \$10,000 $84 x$ and Under Mot From Return Over 5 .	Independent $\$ 8,000$ and Under Over 78\% From Tax Form $\$ 0$ and Under 0 ver $\$ 5,000$
Hean Error	55	. 19	. 45	39	37	20
	32	20	50	34	1.16	28
Status Adjusted Gross Income Income portion of Father/Student Tax Figures Scurce Investment Value. Taxes Paid Home Value Met Household Assets Met Income Household Size Supported by Parents ' 82 Age Exemptions Number in College	Dependent $\$ 10,000$ and Under $\$ 20,000$ and Under Guer 3 (ℓ 4.	Independelt \$8,000 and Upder. Over 78\% From Tax foril Over, $\$ 0$	Dependent Over $\$ 10,000$ From Tax form so Over 10 $\$ 10,000$ and Under	Independent $78 x$ and Under 30 and Under	Dependent Over \$10,000 From Tax Form $\$ 0$ $\$ 0$	Dependent $\$ 10,000$ and Inder 3 and Under
Mean Error :	19	14	11	- 0	- -7	-13

	14	, 48
Status	Dependent	Dependent
Adjusted Gross Income	Over $\$ 10,000$	Over \$10,000
Income Portitan of Father/Student		49x-60x
Tax Figures Source	From fax form	From lax Form
Investment Value	Qver $\$ 0$.	10
Faxes Paid		Over 50
Home Value		Over \$10,000
Net Household Assets -		
Met Income	\cdots	Over \$ $\$ 15,000$
Household Size.		
Supported by Parents '82		Yes
Age		
Exemptions		
Number in College,		
Hean Error	-16	-36

REMOVABLE ERROR BY PERCENT OF RECIPIENTS

ERROR PRONE MODEL-7

EPM 7:
average net student error and group sizes
FOR FINAL GROITPS

EPM 7:

MEAN OVERAMARDS AND UMDERAMARDS FIR FINAL EROLIPS

100

REMOVABLE ERROR BY PERCENT OF RECIPIENTS

ERROR PRONE MODEL-8.

EPM 8:

MEAM OVERALARDS AND UNDERALARDS

FDR FINAL GROUPS

[^1]

EPH 8

APPENDIX B

AID CODING CATEGORIES FOR PREDICTOR VARIABLES

AGEJ: Age in Years

Code

Definition

Percent In Category

0.36
0.65
14.30
14.3
13.53
7.90
$4: 82$
16.12
5.71
2.75

BSFDBTI: Business and Farm Debt

Percent In Category
95.46
1.58 0.69
0.97
1.30

BSFVAL]: Business and Farm Value

TRNO: Number of Transactions

DADPORTJ: Income Portion of Father/Student

FILED: Whether or Not Taxes were•Filed

GROSINCJs The Sum of AG1, Social Secutity and Other Non-Taxable Income

Percent Mi Category
3.89
10.90
16.57
13.69

GROSINCI: The Sum of AG1; Social Security and Other Non-Taxable Income (continued)
Code
4
4
5
6
7
8
9
10
11
12

HOMDBTI: Home Debt

Code	
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

Definition

7,501 to 10,000
10,001 to 12,500
12,501 to $15,000 \mathrm{~m} \quad 9,73$
15,001 to 17,500
17,501 to 20,000 . . 6.03
20,001 to 25,000
25,001 to 30,000
30,001 to 40,000
Above 40,000

Definition
$\$ 0$
1 to 5,000
5,101 to 10,000
10,001 to 15,000
15,001 to 20,000
20,001 to 25,000
25,001 to 30,000
30,001 to 35,000
35,001 to 40,000
40,001 to 45,000
45,001 to 50,000
Over 50,000

Peytent
Mrategory
9.48
10.49
6.36
8.87
$\begin{array}{r}4.89 \\ 4 \\ \hline \\ \hline\end{array}$
0.12
69.38
4.94
7.01
6.03
3.77
2.88
1.90
1.22
0.89
0.97
0.32
0.69 .

HOMEEQJ: Home Debt Subtracted from Home Value


```
*HOMVALJ: Home Value
```

\cdots Code
Percent
In Category
0
1
2
3
4
5
6
7
8
9
10
11
12
13

Definition
\qquad
$\$ 0$
1 to 5,000
5,001 to 10,000
10,001 to, $15,0000^{\circ}$
15,001 to 20,000
20,001 to 25,000
25,001 to 30,000
30,001 to 35,000
35,001 to 40,000
40,001 to 45,000
45,001 to 50,000
50,001 to 60,000
60,001 to 70,000
Above 70,000

- 59.90
2.11
3.73
- 3.20
-5.63
- 4.01
- 5.63
4.05,
3.69
2.43
2.23

1. 58
1.13
0.69

INVDBTJ: Investment bebt

UNVSTEQJ: Investment Debt Subtracted frominvestment Value

NPHE: Number Enrolled in Postsecondary Education

Code
1
2
34
4

Definition -
1
2
3

Over 3

Percent ${ }^{*}$
In Category
20.05
14.18
17.86
16.44
13.89
7.74
4.41
3.00
1.26

1417
(1)

Percent
InCategory
69.30
22.68
7.09
0.93

NETINC1: Taxes Subtracted from Gross Income

$$
\begin{gathered}
\text { Code } \\
0 \\
1 \\
2 \\
3 \\
\hline \begin{array}{c}
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12
\end{array}
\end{gathered}
$$

Definition
Less Than $\$ 0$
1 to 2,500
2,501 to 5,000
5,001 to 7,500
7,501 to 10,000
10,001 to 12,500
12,501 to 15,000
15,001 to 17,500
17,501 to 20,000
20,001 to 25,000
25,001 to 30,000
30,001 to 40,000

Over 40,000

Percent
In Category
3.89
11.06
17.09
13.57
10.49
10.94
7.53
7.70
6.28
7.82

2.88
0.65
0.12

NHAJ: Sum of Savings, Home Equity, Investment Equity

NVBFI: Business and Farm Debt Subtracted from Business and Farm Value

PARMAR: Parents' Marital Status

C

STATUS: Independent, Dependent Status of Student
*

Percent In Category \rightarrow
58.97
41.03

Percent
In Category
1.06
12.06
3.08
1.05
0.93
0.36

Percent In Category

$$
\begin{array}{r}
0.89 \\
84.85 \\
9.32 \\
4.94
\end{array}
$$

TAXFIG: Source of Tax Figures .

Definition

Student Presumed Single.
Unmarried
Married

Code
Definition
Percent

In Category

40.58
59.42
taxpaidy: Taxes Paid

Percent in Category
46.05
18.15
11.10
7.45
5.91
4.37
3.08

TAXPALDJ: Taxes Paid (continued)

TUITIONIE Unreimbursed Elementary and Secondary School Tuition

UMEDOLRT: Unusual Medical Expenses in Dollars

UMEPERCJ: Unusual Medical Expenses - Percent of Net Income

Code

0
1
2
3
4

Definition
Net Income Under\$0 No Medical Expenses 1 to 10% 11 to 30% Over 30\%

XMPT: Number of Exemptions

AGle Adjusted Gross Income

Code

Definition
Under $\$ 0$
1 to 2,000
2,001 to 4,000
4,001 to 6,000
6,001 to 8,000
8,001 to 10,000
10,001 to 12,000
12,001 to 14,000
14,001 to 16,000
16,001 to 18,000
18,001 to 20,000
20,001 to 25,000
$\rightarrow 25,001$ to 30,000
30,001 to 40,000
Over 40,000.

\bullet

Percent
In Category
17.94
8.59
9.84
8.75
7.53
6.64
7.70
5.22
4.86
4.37
4.62
7.90
3.97
1.94
0.12

Percent In Categery

86.84

1.13
$1: 26$
1.46
2.75
1.46
1.38
0.93
0.61

SOCSEC: Social Security (continued)

STiUDINC: Stuident and Spousé uscome

Code

Definition , \quad| Percent |
| :---: |
| In Category |

0
1
2
-3
4
5
6
7

$$
\$ 0
$$

$$
72.54 .
$$

$$
\begin{aligned}
& 1 \text { to } 1,000
\end{aligned} \quad+8.55
$$

$$
\text { R1,001 to } 2,000,9.23
$$

$$
\text { - 2,001 to } 3,000 \text {. } 5.18
$$

$$
3,001 \text { to } 4,000 \quad 2.71
$$

$$
4,001 \text { to } 9,000
$$

$$
9,001 \text { to } 15,000 \quad 0.20
$$

$$
\text { Over } 15,000
$$

ITEM: Itemized Deductions

-

LDV79: Lived-with Parents in 1981

ASSTD80: Assisted Financially by Parents in 1982

3

VABENJ: Veterans Benefits

STSOCJ: Student's Projected Social Security for 1982

SAIOJ:' SAI Using Inflated Computed-Applicant Record (CAR) Figures and 1982-83 Computation Formula '

[^0]: *Cost of attendance and fullyear, enrollment status were derived from data collected in the spring visit to institutions.

[^1]: 0.
